jueves, 29 de abril de 2010

CONCENTRADOR,REPETIDOR Y ROUTER








CONCENTRADOR

Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.
Introducción
Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los
puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.
Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal
Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.
Dentro del modelo
OSI el concentrador opera a nivel de la capa física, al igual que los repetidores, y puede ser implementado utilizando únicamente tecnología analógica. Simplemente une conexiones y no altera las tramas que le llegan.
Visto lo anterior podemos sacar las siguientes conclusiones:
El concentrador envía información a ordenadores que no están interesados. A este nivel sólo hay un destinatario de la información, pero para asegurarse de que la recibe el concentrador envía la información a todos los ordenadores que están conectados a él, así seguro que acierta.
Este tráfico añadido genera más probabilidades de colisión. Una colisión se produce cuando un ordenador quiere enviar información y emite de forma simultánea con otro ordenador que hace lo mismo. Al chocar los dos mensajes se pierden y es necesario retransmitir. Además, a medida que añadimos ordenadores a la red también aumentan las probabilidades de colisión.
Un concentrador funciona a la velocidad del dispositivo más lento de la red. Si observamos cómo funciona vemos que el concentrador no tiene capacidad de almacenar nada. Por lo tanto si un ordenador que emite a 100
Mb/s le trasmitiera a otro de 10 Mb/s algo se perdería del mensaje. En el caso del ADSL los routers suelen funcionar a 10 Mb/s, si lo conectamos a nuestra red casera, toda la red funcionará a 10 Mb/s, aunque nuestras tarjetas sean 10/100 Mb/s.
Un concentrador es un dispositivo simple, esto influye en dos características. El precio es barato. Añade retardos derivados de la transmisión del paquete a todos los equipos de la red (incluyendo los que no son destinatarios del mismo).
Los concentradores fueron muy populares hasta que se abarataron los
switch que tienen una función similar pero proporcionan más seguridad contra programas como los sniffer. La disponibilidad de switches ethernet de bajo precio ha dejado obsoletos, pero aún se pueden encontrar en instalaciones antiguas y en aplicaciones especializadas.
Los concentradores también suelen venir con un
BNC y/o un conector AUI para permitir la conexión a 10Base5, 10Base2 o segmentos de red.
REPETIDOR
Un repetidor es un
dispositivo electrónico que recibe una señal débil o de bajo nivel y la retransmite a una potencia o nivel más alto, de tal modo que se puedan cubrir distancias más largas sin degradación o con una degradación tolerable.
El término repetidor se creó con la
telegrafía y se refería a un dispositivo electromecánico utilizado para regenerar las señales telegráficas. El uso del término ha continuado en telefonía y transmisión de datos.
En
telecomunicación el término repetidor tiene los siguientes significados normalizados:
Un dispositivo
analógico que amplifica una señal de entrada, independientemente de su naturaleza (analógica o digital).
Un dispositivo
digital que amplifica, conforma, retemporiza o lleva a cabo una combinación de cualquiera de estas funciones sobre una señal digital de entrada para su retransmisión.
En el modelo de referencia
OSI el repetidor opera en el nivel físico.
En el caso de señales digitales el repetidor se suele denominar
regenerador ya que, de hecho, la señal de salida es una señal regenerada a partir de la de entrada.
Los repetidores se utilizan a menudo en los
cables transcontinentales y transoceánicos ya que la atenuación (pérdida de señal) en tales distancias sería completamente inaceptable sin ellos. Los repetidores se utilizan tanto en cables de cobre portadores de señales eléctricas como en cables de fibra óptica portadores de luz.
Los repetidores se utilizan también en los servicios de
radiocomunicación. Un subgrupo de estos son los repetidores usados por los radioaficionados.
Asimismo, se utilizan repetidores en los enlaces de telecomunicación punto a punto mediante radioenlaces que funcionan en el rango de las
microondas, como los utilizados para distribuir las señales de televisión entre los centros de producción y los distintos emisores o los utilizados en redes de telecomunicación para la transmisión de telefonía.
En comunicaciones ópticas el término repetidor se utiliza para describir un elemento del equipo que recibe una señal óptica, la convierte en eléctrica, la regenera y la retransmite de nuevo como señal óptica. Dado que estos dispositivos convierten la señal óptica en eléctrica y nuevamente en óptica, estos dispositivos se conocen a menudo como
repetidores electroópticos.
Los repetidores telefónicos consistentes en un receptor (auricular) acoplado mecánicamente a un
micrófono de carbón fueron utilizados antes de la invención de los amplificadores electrónicos dotados de tubos de vacío.
HUB

En informática un
hub o concentrador es un equipo de redes que permite conectar entre sí otros equipos y retransmite los paquetes que recibe desde cualquiera de ellos a todos los demás. Los hubs han dejado de ser utilizados, debido al gran nivel de colisiones y tráfico de red que propician. Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto el puerto del que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos.

SWITCH
Un conmutador o switch es un dispositivo digital de lógica de interconexión de
redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.


Un conmutador en el centro de una red en estrella.
Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las
LANs (Local Area Network- Red de Área Local).




ROUTER
router ADSL es un dispositivo que permite conectar uno o varios equipos o incluso una red de área local (LAN)


Diagrama de una red simple con un modem 2Wire que actúa como ruteador Firewall y DHCP.
Realmente se trata de varios componentes en uno. Realiza las funciones de:
Puerta de enlace, ya que proporciona salida hacia el exterior a una red local.
Router: cuando le llega un paquete procedente de Internet, lo dirige hacia la interfaz destino por el camino correspondiente, es decir, es capaz de encaminar paquetes IP.
Módem ADSL: modula las señales enviadas desde la red local para que puedan transmitirse por la línea ADSL y demodula las señales recibidas por ésta para que los equipos de la LAN puedan interpretarlos. De hecho, existen configuraciones formadas por un módem ADSL y un router que hacen la misma función que un router ADSL.
Punto de acceso wireless: algunos router ADSL permiten la comunicación vía Wireless (sin cables) con los equipos de la red local.
Como se puede ver, los avances tecnológicos han conseguido introducir la funcionalidad de cuatro equipos en uno sólo.



















MEDIOS DE TRANSMISION FISICAS

Una de las principales necesidades del hombre es comunicarse. No importa cómo ni cuando, pero permanecer comunicado a toda hora parece ser la preocupación que nos agobia más y más en nuestros días.
Las redes de transmisión de datos cumplen esa función, nos mantienen en comunicación constante.
Es así como las redes de transmisión de datos se han convertido en una prioridad en todas las grandes empresas y también en la mayoría de las “pymes”.
Las redes de transmisión pueden mantener comunicados simultáneamente a dos o mas usuarios, por lo que cuando se trata de compartir datos, las posibilidades son ilimitadas.
Pero, para compartir datos en forma óptima, se necesita que cada uno de los componente de la red, este correctamente conectado a ella.
Para tal efecto se utilizan diferentes medios físicos de transmisión, en los cuales se ahondará en este informe.


Cable Coaxial
El cable coaxial contiene un conductor de cobre en su interior. Este va envuelto en un aislante para separarlo de un apantallado metálico con forma de rejilla que aísla el cable de posibles interferencias externas.
Cable Coaxial
Aunque la instalación del cable coaxial es más complicada que la del UTP, este tiene un alto grado de resistencia a las interferencias. Por otra parte también es posible conectar distancias mayores que con los cables de par trenzado. Existen dos tipos de cable coaxial, el fino y el grueso conocidos como thin coaxial y thick coaxial.
Con frecuencia se pueden escuchar referencias al cable coaxial fino como thinnet o 10Base2. Esto hace referencia a una red de tipo Ethernet con un cableado coaxial fino, donde el 2 significa que el mayor segmento posible es de 200 metros, siendo en la práctica reducido a 185 m.
El cable coaxial es muy popular en las redes con topología de BUS.
Con frecuencia se pueden escuchar referencias al cable coaxial grueso como thicknet o 10Base5. Esto hace referencia a una red de tipo Ethernet con un cableado coaxial grueso, donde el 5 significa que el mayor segmento posible es de 500 metros.
El cable coaxial grueso tiene una capa plástica adicional que protege de la humedad al conductor de cobre. Esto hace de este tipo de cable una gran opción para redes de BUS extensas, aunque hay que tener en cuenta que este cable es difícil de doblar.
Cable de fibra óptica
El cable de fibra óptica consiste en un centro de cristal rodeado de varias capas de material protector. Lo que se transmite no son señales eléctricas sino luz con lo que se elimina la problemática de las interferencias. Esto lo hace ideal para entornos en los que haya gran cantidad de interferencias eléctricas. También se utiliza mucho en la conexión de redes entre edificios debido a su inmunidad a la humedad y a la exposición solar.
Con un cable de fibra óptica se pueden transmitir señales a distancias mucho mayores que con cables coaxiales o de par trenzado. Además, la cantidad de información capaz de transmitir es mayor por lo que es ideal para redes a través de las cuales se desee llevar a cabo videoconferencia o servicios interactivos. El coste es similar al cable coaxial pero las dificultades de instalación y modificación son mayores. En algunas ocasiones escucharemos 10BaseF como referencia a este tipo de cableado.

10
Características de la fibra óptica
El aislante exterior está hecho de teflón o PVC.
Fibras Kevlar ayudan a dar fuerza al cable y hacer más difícil su ruptura.
Cable de fibra óptica
Se utiliza un recubrimiento de plástico para albergar a la fibra central.
El centro del cable está hecho de cristal o de fibras plásticas.




CABLE DE PAR TRENZADO



El cable de par trenzado es una forma de conexión en la que dos aisladores son entrelazados para tener menores interferencias y aumentar la potencia y la diafonía de los cables adyacentes.
El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar
señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. El ruido de los dos cables se aumenta mutuamente en esta sustracción debido a que ambos cables están expuestos a EMI similares.
La tasa de trenzado, usualmente definida en vueltas por
metro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto menor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de IEM.
El cable de par trenzado debe emplear
conectores RJ45 para unirse a los distintos elementos de hardware que componen la red. Actualmente de los ocho cables sólo cuatro se emplean para la transmisión de los datos. Éstos se conectan a los pines del conector RJ45 de la siguiente forma: 1, 2 (para transmitir), 3 y 6 (para recibir).
La Galga o AWG, es un organismo de normalización sobre el cableado. Por ejemplo se puede encontrar que determinado cable consta de un par de hilos de 22 AWG.
AWG hace referencia al grosor de los hilos. Cuando el grosor de los hilos aumenta el AWG disminuye. El hilo telefónico se utiliza como punto de referencia; tiene un grosor de 22 AWG. Un hilo de grosor 14 AWG es más grueso, y uno de 26 AWG es más delgado.































UTILIZAR LOS ADAPTADORES DE RED



Tipos de adaptadores de red
Existen varias opciones ala hora de conseguir que un ordenador pueda conectarse a una red
inalámbrica.
USB: Sin duda alguna los más versátiles, con un tamaño actual inferior incluso a 8 x 2’5 cm, los
adaptadores inalámbricos USB permitirán que disfrutes de los beneficios de estas redes tanto
en un PC de sobremesa como en un portátil. Triunfan por su tamaño.
PCMCIA : Exclusivo para los ordenadores portátiles, las tarjetas PCMCIA inalámbricas
tampoco disponen de la versatilidad de los adaptadores USB, aunque bien es cierto que, en un
ordenador portátil, estos últimos aparecen en menor medida, y habitualmente se cuenta con la
bahía PCMCIA libre. Su instalación es, en cualquier caso, mucho más simple que el de las
tarjetas PCI, ya que ni siquiera hay que abrir el ordenador.
PCI : Probablemente el menos demandado y por lo tanto fabricado. Los adaptadores de red
inalámbricos PCI obligan al usuario que abra su PC de sobremesa, para insertar la tarjeta
inalámbrica dentro de una bahía PCI libre.




Tipos de adaptadores de red




Hay tres tipos de adaptadores de red que se utilizan en las redes locales: Ethemet, Token Ring
y ARCnet.
Ethemet suele utilizarse en redes peer-to-peer y cliente-servidor razonablemente grandes, no
es mucho más caro que ARCnet y en la mayoría de las situaciones es el doble de rápido.
Aunque las tarjetas ARCnet son lentas, resultan muy fiables.
Las tarjetas de tipo Token Ring son cuatro veces más caras que las Ethemet y resultan 1.5
veces más rápidas. Los otros beneficios de Token Ring son una mayor fiabilidad que Ethernet ,
que pueden proporcionar un diagn6stico del estado de la red y que cuentan con capacidades
de administraci6n que son muy valiosas en las grandes redes (para comunicarse el Pc de
arranque del IBM S/390 con el propio IBM usa una Token Ring ). La decisi6n sobre el tipo de
tarjetas de red seguramente .apuntará hacia Ethernet, salvo que exista una situaci6n en la que
se requie~an puestos de trabajo con misi6n crítica, en cuyo , caso habrá que plantearse pagar
el precio de Token Ring.
ARCnet es usado habitualmente en pequeñas redes peer-to-peer y están sufriendo la
competencia de las tarjetas tipo Ethemet. Las tarjetas Token Ring se utilizan en redes más
grandes de tipo cliente-servidor, cuyo funcionamiento debe ser absolutamente seguro.





















viernes, 16 de abril de 2010

PROTOCOLOS DE COMUNICACIÓN Y ORGANIZACIÓN DE ESTANDARIZACION

Protocolo de comunicaciones En el campo de las telecomunicaciones, un protocolo de comunicaciones es el conjunto de reglas normalizadas para la representación, señalización, autenticación y detección de errores necesario para enviar información a través de un canal de comunicación. Un ejemplo de un protocolo de comunicaciones simple adaptado a la comunicación por voz es el caso de un locutor de radio hablando a sus radioyentes. .
Estandarización
Los protocolos implantados en sistemas de comunicación de amplio impacto, suelen convertirse en estándares, debido a que la comunicación e intercambio de información (datos) es un factor fundamental en numerosos sistemas, y para asegurar tal comunicación se vuelve necesario copiar el diseño y funcionamiento a partir del ejemplo pre-existente. Esto ocurre tanto de manera informal como deliberada.
Ejemplos de protocolos de red
Capa 1: Nivel físico
Cable coaxial o UTP categoría 5, categoria 5e, categoria 6, categoria 6a Cable de fibra óptica, Cable de par trenzado, Microondas, Radio, RS-232.
Capa 2: Nivel de enlace de datos
Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, ATM, HDLC.,cdp
Capa 3: Nivel de red
ARP, RARP, IP (IPv4, IPv6), X.25, ICMP, IGMP, NetBEUI, IPX, Appletalk.
Capa 4: Nivel de transporte
TCP, UDP, SPX.
Capa 5: Nivel de sesión
NetBIOS, RPC, SSL.
Capa 6: Nivel de presentación
ASN.1.
Capa 7: Nivel de aplicación
SNMP, SMTP, NNTP, FTP, SSH, HTTP, SMB/CIFS, NFS, Telnet, IRC, POP3, IMAP, LDAP.
Protocolos comunes
• IP (Internet Protocol)
• UDP (User Datagram Protocol)
• TCP (Transmission Control Protocol)
• DHCP (Dynamic Host Configuration Protocol)
• HTTP (Hypertext Transfer Protocol)
• FTP (File Transfer Protocol)
• Telnet (Telnet Remote Protocol)
• SSH (Secure Shell Remote Protocol)
• POP3 (Post Office Protocol 3)
• SMTP (Simple Mail Transfer Protocol)
• IMAP (Internet Message Access Protocol)
• SOAP (Simple Object Access Protocol)
• PPP (Point-to-Point Protocol)
• STP (Spanning Tree Protocol)
• SUPER (Supreme Perpetued Resudict)


ORGANIZACIONES DE ESTANDARIZACION

Las organizaciones de estandarización son organismos encargados de establecer los diferentes estándares utilizados en diferentes áreas: telecomunicaciones, redes, sistemas móviles, etc, a nivel mundial. Existe una variedad muy grande de organizaciones de estandarización en el mundo, aquí se presentan algunas de ellas.

ORGANISMO
SIGNIFICADO
ADSL
Forum Asymmetric Digital Subscriber Line
ANSI
American National Standards Institute
ATM Forum
Asynchronous Transfer Mode
ETSI
European Telecommunications Standards Institute
IEEE
Institute of Electrical and Electronics Engineers
IETF
Internet Engineering Task Force
ISO
International Organization for Standarization
ITU
International Telecommunications Union
SANS
System Administration Network Security
TIA
Telecommunications Industry Association





EXAMINAR NUEVAS TECNOLOGIAS
Las redes inalámbricas se han desarrollado muy rápidamente al calor de estas nuevas necesidades y, hoy, son muchos los dispositivos que pueden conectarse mediante estos sistemas.
Bluetooth o Wi-Fi
La tecnología que se utiliza para las redes domésticas es la Wi-Fi, o Wireless Fidelity, también llamada WLan o IEEE 802.11. Aunque todos los dispositivos Wi-Fi son compatibles entre sí, es importante saber que hay dos estándares: el 802.11b y el 802.11g. El primero opera a menos velocidad, aunque es más barato. No tiene sentido adquirir un emisor rápido para conectarlo a un receptor lento, así que los estándares deben coincidir en todos los elementos de la red.








Canal de Transmisión
La red de suministro eléctrico no ha sido concebida para el transporte de señales de alta frecuencia (HF, por sus siglas en inglés). Por lo tanto, se deben considerar las limitaciones de este medio para garantizar la buena transmisión de señales de alta frecuencia sin perturbar los dispositivos próximos y las frecuencias de la banda de radio de 1 a 30 MHz. Algunas frecuencias de esta banda se reservan para el ejército o para los radioaficionados. Se debe de tener en cuenta toda esta información para poder proporcionar suficiente ancho de banda al usuario final.

TECNICAS DE MODULACION DE DATOS
El principal desafío de las PLC es "conseguir" un ancho de banda con un bajo nivel de emisión, donde la energía eléctrica de transmisión se limite en la línea eléctrica, o un tratamiento de la señal con las mejores prestaciones posibles para superar esta restricción en los niveles de emisión.
En las soluciones actuales se usan dos tipos de modulación: OFDM (Orthogonal Frequency Division Multiplexing, en español Multiplexación de división de frecuencia ortogonal) y Spread Spectrum (o modulación de espectro expandido).
OFDM: Orthogonal Frequency Division Multiplexing (Multiplexación de división de frecuencia ortogonal)
La técnica de transmisión OFDM se basa en una transmisión simultánea en n bandas de frecuencia (entre 2 y 30 MHz) con N cantidad de portadoras por banda. La señal se comparte entre las portadoras. Las frecuencias de trabajo se eligen de acuerdo con las normas de regulación; las otras se "apagan" con el uso de software.
La señal se emite a un nivel de ancho de banda suficientemente alto para poder aumentar el flujo y luego se aplica a varias frecuencias de forma simultánea.
SS: Modulación Spread Spectrum (Espectro expandido)
El principio que subyace a la modulación del espectro expandido consiste en "expandir" información por una banda de frecuencia mucho más ancha que la banda necesaria, con el propósito de contrarrestar la señales de interferencia y las distorsiones relacionadas con la propagación: la señal se confunde con el ruido. La señal se codifica separadamente y se asigna un código a cada usuario. Este código se decodifica luego cuando llega a su destino.
PROPONER TOPOLOGIAS DE RED
Topología de la red
La topología de red define la estructura de
una red. Una parte de la definición topológica es la topología física, que es la disposición real de los cables o medios. La otra parte es la topología lógica, que define la forma en que los hosts acceden a los medios para enviar datos. Las topologías más comúnmente usadas son las siguientes:
La topología de anillo conecta un host con el siguiente y al último host con el primero. Esto crea un anillo físico de cable.

La topología en estrella conecta todos los cables con un punto central de concentración.
Una topología en estrella extendida conecta estrellas individuales entre sí mediante la conexión de hubs o switches. Esta topología puede extender el alcance y la cobertura de la red.
Una topología de bus circular usa un solo cable backbone que debe terminarse en ambos extremos. Todos los hosts se conectan directamente a este backbone.

Una topología jerárquica es similar a una estrella extendida. Pero en lugar de conectar los HUBs o switches entre sí, el sistema se conecta con un computador que controla el tráfico de la topología.
La topología de malla se implementa para proporcionar la mayor protección posible para evitar una interrupción del servicio. El uso de una topología de malla en los sistemas de control en red de una planta nuclear sería un ejemplo excelente. Como se puede observar en el gráfico, cada host tiene sus propias conexiones con los demás hosts. Aunque Internet cuenta con múltiples rutas hacia cualquier ubicación, no adopta la topología de malla completa.
TOPOLOGIAS LOGICAS
La topología lógica de una red es la forma en que los hosts se comunican a través del medio. Los dos tipos más comunes de topologías lógicas son broadcast y transmisión de tokens.
La topología broadcast simplemente significa que cada host envía sus datos hacia todos los demás hosts del medio de red. No existe una orden que las estaciones deban seguir para utilizar la red. Es por orden de llegada, es como funciona Ethernet
La topología transmisión de tokens controla el acceso a la red mediante la transmisión de un token electrónico a cada host de forma secuencial. Cuando un host recibe el token, ese host puede enviar datos a través de la red. Si el host no tiene ningún dato para enviar, transmite el token al siguiente host y el proceso se vuelve a repetir. Dos ejemplos de redes que utilizan la transmisión de tokens son Token Ring y la Interfaz de datos distribuida por fibra (FDDI). Arcnet es una variación de Token Ring y FDDI. Arcnet es la transmisión de tokens en una topología de bus.